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In this paper we will focus on the effects of teachers’ lack of the algebraic knowledge 
and sensitiveness that are necessary to effectively control the plurality of levels of 
interpretation involved within activities aimed at making students aware of the 
meanings associated to their use of algebraic language. Our analysis of class 
discussions conducted by a group of middle-school teachers involved in university 
training courses enabled us to highlight profound gaps, between modeling and 
interpretation, that prevent them from becoming aware of what it is important to 
stress when facing this kind of activities with students. 
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FOCUS ON INTERPRETATIVE ASPECTS IN THE TEACHING OF 
ALGEBRA: KEY ROLE OF THE TEACHER 
Since the development of the first studies on the problems related to the learning and 
teaching of algebra, many researchers reject the previous widespread idea that 
students’ difficulties are mainly related to the complexity of algebraic syntax (see for 
instance Ursini, 1990; Kieran, 1992). The focus has therefore shifted on students’ 
control of the meanings associated to their use of algebraic language. Different 
studies stress the importance of stimulating them with the aim of fostering their aware 
use of symbols as tools to represent, communicate, generalize, solve problems, 
develop reasoning (Arcavi, 1994; Arzarello, Bazzini, & Chiappini, 2001; Kieran, 
2004). Bell (1996) states, in particular, that if students are given the possibility to 
have experience of the use of algebraic symbolism as a tool to express regularities 
and represent relationships, they could be guided through what he calls the “essential 
algebraic cycle”, characterised by three main typical algebraic activities: to represent, 
to manipulate and to interpret. 
In this work we focus on the third component of the essential algebraic cycle: the 
interpretative processes that are typical of algebraic activities. When we use the term 
‘interpretative processes’ we refer both to Duval’s (2006) idea of conversions 
between different representation registers (in the case of algebra, from symbolic to 
verbal register and viceversa, but also from graphic, to symbolic, to verbal) and to 
Arzarello, Bazzini and Chiappini (2001)’s model for teaching algebra as a game of 
interpretations. These last researchers highlight, in particular, how the activation of 
conceptual frames (defined as an “organized set of notions, which suggests how to 
reason, manipulate formulas, anticipate results while coping with a problem”) and the 



  
changes from a frame to another and from a knowledge domain to another could 
represent fundamental steps in the activation of interpretative processes. 
The problem of algebraic modeling and of the coordination between verbal and 
algebraic language have been a central focus of research since the eighties. A 
paradigmatic study is the one developed by Clement (1982), who documented 
erroneous approaches developed by science-oriented college students in facing 
simple kind of algebra word problems. As regard to this problem, Smith and 
Thompson (2007) suggest that students’ difficulties with algebra result not only from 
algebra curricula that lack meaning and coherence, but also from elementary 
curricula that fail to develop students’ abilities to reason about relationships. This 
observation has been shared by different research studies developed in the realm of 
Early Algebra. Blanton and Kaput (2005, 2011), for example, highlight the crucial 
role played, in elementary school mathematics, by the algebraic reasoning embedded 
in finding, describing, justifying and symbolizing mathematical relationships between 
quantities, advocating a functional approach to algebra in the elementary grades. This 
is in tune with Kieran (2004), who refers to the shift of focus from the calculation of 
numerical answers to the relationships between quantities as one of the fundamental 
adjustments that students should make in their transition from arithmetic to algebra. 
This vision is in tune with the approach that we have developed within the ArAl 
Project (see for instance Cusi, Malara, & Navarra, 2011), aimed at proposing a 
relational and linguistic approach to Early Algebra and also meant to constitute an 
integrated teacher education program.  
A recent study by Magiera, van den Kieboom and Moyer (2013) has highlighted that 
pre-service middle school teachers demonstrated a rather limited ability to recognize 
the full potential of algebra-based tasks to elicit algebraic thinking in students. They 
suggest, therefore, that there is a need of making teachers understand the contexts in 
which the various features of algebraic thinking might arise in order to enable them to 
effectively engage students. In tune with these results, Strand and Mills (2014), in 
their survey of research literature on prospective elementary school teachers’ 
knowledge of algebra, state that it is well documented that these teachers tend to 
struggle to effectively interpret and use algebraic symbols (even those that they have 
produced themselves), to interpret graphical representations and to make connections 
between representations.  
Our experience as teacher educators enabled us to observe similar problems also in 
the Italian context. Although research results about the importance of guiding 
students through the whole essential algebraic cycle have been widespread, Italian 
teachers are frequently not used to focusing on interpretative aspects. As a result, 
formalism and application dominate. This requires us to shift the focus on the teacher 
knowledge of the interpretative aspects connected to algebraic thinking and on the 
effects of this knowledge on students’ learning. A framework to identify the 
knowledge for teaching school algebra has been developed by McCrory, Floden, 
Ferrini-Mundy, Reckase and Senk (2012), who stress the role played by teachers’ 



  
capability of selecting, applying, and translating among mathematical representations 
and of making connections between manipulatives and mathematical ideas explicitly. 
But this way of behaving in the class must be educated. In order to foster teachers’ 
overcoming of these difficulties and their effective approach in guiding students in 
the transition from arithmetic to algebra, in our in-service training courses for middle-
school teachers we propose specific laboratorial activities focused on this theme. 
In this paper we will present the main results from the analysis of the first of these 
activities, which was aimed at making trainee-teachers (in the following TT) directly 
experience how (and if) they are able to foster students’ activation of interpretative 
processes during whole class discussions about a task involving proportional 
relations. In particular, we will highlight how this analysis enabled us to document 
the effects, in TT’ way of conducting class processes, of their lack of the specific 
knowledge that could favour students’ development of interpretative attitudes. 

METHODOLOGY OF WORK WITH TRAINEE-TEACHERS  
The laboratorial activity we present was the first one proposed to a group of 58 
middle-school (grades 6-7-8) TT involved in a training course aimed at making them 
achieve a teaching qualification. This course, which lasted six months, was 
specifically devoted to temporary teachers that have been working in school for at 
least three years. In Italy, in fact, also people who do not have a teaching 
qualification could work as teachers in school. As regards, in particular, the middle-
school context, mathematics is mainly taught by teachers who do not have a 
mathematics background (their degrees could be in biology, chemistry, natural 
science, geology…). 
During the whole training period, the TT attended to different courses in Mathematics 
Education, carried out by the authors themselves and by another colleague involved 
in the ArAl project. Many lessons were devoted to the problem of the teaching of 
algebra, with a specific focus on the main new trends in Early Algebra and on the role 
played by the teacher in the class. The first laboratorial activity in which the TT were 
involved was focused on a problem that we are going to analyse in detail in the 
following section. The TT were asked to propose the problem to their students and to 
carry out its resolution during a whole class discussion. This is the text of the 
problem: 
“A florist sends to a flower grower an email, asking to send him plants of sage and 
rosemary. However he does not indicate the exact number of plants, but specifies that for 
every 4 plants of sage he wants 6 plants of rosemary. Let r represents the quantity of plants 
of rosemary and s the quantity of plants of sage. Represent: (a) the relation between these 
two quantities; (b) the number of plants of sage through the number of plants of rosemary; 
(c) the number of plants of rosemary through the number of plants of sage. 
Draw, in the Cartesian plane O(r,s), the graph of the relation that expresses the quantity of 
plants of sage through the quantity of plants of rosemary. Then draw, in the plane O(s,r), 
the graph of the relation that expresses the quantity of plants of rosemary through the 



  
quantity of plants of sage. 
The flower grower delivers 66 plants of sage and tells him that he will send later the plants 
of rosemary. How many plants of rosemary does he have to deliver?” 

This problem can be located among the activities, usually proposed in grade 7, which 
are aimed at linking the discrete arithmetic of natural numbers to the arithmetic of 
rational and real numbers. 
We have chosen this specific problem because it could be both faced: (1) Adopting 
an “arithmetical approach” - typical of the Italian school tradition - focused on the 
application of properties of proportions; (2) Referring to an idea of proportionality as 
a functional relation, idea that could open the way to the development of algebraic 
reasoning. The approach that we have suggested TT to adopt in their classes was the 
second. Our aim was, in fact, to make them become aware that classical problems 
that, according to the Italian school tradition, are usually faced through the 
application of “rules” could instead be solved through the study of relations and, 
therefore, through the activation of an interesting game of interpretations. This 
approach to the resolution of the problem involves, in fact, the intertwining of 
different interpretative levels (as we will highlight in the next section) and the 
activation of different representations of the proportional relation involved.  
The objectives of the problem and the main processes to be activated during a class 
discussion on its resolution were therefore shared with TT with the aim of making 
them recognise the potential of the task to elicit algebraic reasoning in students.  

RESEARCH AIMS AND RESEARCH METHODOLOGY 
In this paper we are going to focus on our analysis of the transcripts of the class 
discussions conducted by TT. Our main aim is to highlight what kind of difficulties 
they faced when they implemented the problem in their classes, trying to follow our 
suggestion of adopting an ‘algebraic approach’ to its resolution (namely an approach 
focused on the algebraic representation of the relation involved and aimed at the 
activation of different interpretative processes). 
In the following we will analyse the problem introduced in the previous paragraph. 
This a-priori analysis of the problem has two main aims: 
(1) The first aim is to highlight the multifaceted interpretative processes that could be 
activated in its resolution. Since this analysis was shared with TT, this “hypothetical” 
resolution represents also the path that they were asked to follow when facing the 
problem during the whole class discussions with their classes.  
(2) The second aim is to identify specific indicators for our analysis of the transcripts 
of the class discussions conducted by TT. These indicators refer to the games of 
interpretations and the meta-level reflections that TT should have tried to develop in 
their interaction with students. 



  
Analysis of the problem and identification of the indicators for the analysis of 
TT’ ways of guiding their classes in its resolution 
As we stated above, if we focus on an “algebraic approach” to the resolution of the 
problem, it could be characterised by a deep twine between aspects related to the use 
of different representation registers and aspects related to the activation of 
interpretative processes at different levels.  
To carry out the task in the class the teacher should initially guide students in the 
analysis of the text of the problem and in the identification of the key verbal relation 
that has to be translated into a mathematical sentence. This requires to consider 
proportions between couples of numbers that exemplify the relation itself and their 
classical representation (i.e. 8:12=4:6, 12:18=4:6…), then to translate them into 
fractional terms (i.e. 8/12=4/6, 12/18=4/6…).  
A discussion aimed at a real sharing of the meaning of the letters r and s, introduced 
in the text of the problem, should precede the formalization of the relation between 
the number of plants of sage and the number of plants of rosemary. The possible 
formalizations of this relation should be compared and interpreted through their 
verbalisation. For instance: if the relation is represented through the proportion 

, it can be interpreted as “the quantity of plants of sage is to the quantity of 
plants of rosemary as 4 is to 6”; but it could also be represented through , 
that can be interpreted as “the fourth part of the quantity of plants of sage is equal to 
the sixth part of the quantity of plants of rosemary”; etc. This moment, devoted to the 
interpretation of the formalizations proposed by students, prevents from the uncritical 
acceptance of erroneous symbolic formalizations such as , where letters play 
the role of simple labels. 
During this discussion, the teacher should also foster the representation and 
subsequent verbal interpretation of the previous proportions in terms of equivalence 
between fractions. This leads to the required representation of the number of plants of 
sage through the number of plants of rosemary and vice versa. For example, starting 
from the equality  and the simplified , the class could interpret the latest as 
“the ratio between s and r is 2/3” and then as “s is 2/3 of r”, that can quickly lead to 

, which is the required symbolic representation of the number of plants of 
sage through the number of plants of rosemary. 

After the identification of the two representations -  and  - of the 
relations between s and r, another interpretative process should be activated: the 
particularization of the two formulas through the analysis of specific numerical cases, 
which could foster students’ acquisition of the concept of variable. The couples of 
values determined through this particularization could be inserted into two tables that 
better enable to highlight the interrelations between one couple of values and the one 
that is obtained inverting the values. 



  
After the construction of the two required graphs through the identification of the 
points corresponding to the couples of values collected in the two tables, the teacher 
should guide students in noticing that, although the alignment of the points could 
induce the idea of drawing a continuous line, not all the couples of numbers that are 
solutions of the two equations are also representatives of the phenomenon that has 
been modelled. Another aspect to be discussed in this phase is the pertinence of the 
solution r=99, s=66 according to the florist’s request. These observations could be 
followed by a geometrical examination of the model, discussing the meaning of the 
two ratios 2/3 and 3/2 and introducing the neutral reference system (x,y) to compare 
the graphs of the two equations and empirically identify their geometrical relation. 
This analysis enabled us to identify four main key-phases that characterise the 
resolution of the problem and four main groups of indicators, corresponding to the 
different phases, which are summarised in the following table: 

Key-phases in the 
resolution of the 

problem 
The teacher guides the students in the: 

Phase 1:  
The transition from 
proportions to the 

formalization of the 
proportionality law 

− Identification of the couples of numbers that satisfy the 
condition required in the problem; 

− Generalization and corresponding construction, through the 
introduction of letters, of the proportions representing the 
relation between the two quantities; 

− Verbalization of the constructed proportions; 
− Interpretation of the proportions in fractional terms.  

Phase 2:  
The twine between 

syntactical and 
semantic aspects in 
the transition from 

the implicit forms of 
the relation to its 
two explicit forms 

− Control of the syntactical transformations that lead to the 
two explicit formulas; 

− Identification of the calculation process subtended to each 
formula; 

− Verbalization of the meaning expressed by each formula; 
− Conceptualization of the letters as variables and 

identification of their different roles (independent vs 
dependent variable); 

− Discovery of the predicting power of each formula; 
− Conceptualization of each formula as an equation and of the 

couples of numerical values that verify it as solutions of 
this equation; 

− Discovery of the direct connection between the two 
formulas and exploration of the interrelation between their 
solutions. 

Phase 3:  
The representation 
of the two relations 

on the Cartesian 
plane. 

− Coordination between symbolic and graphic registers to 
represent the graphs of the two formulas in the Cartesian 
planes (r,s) and (s,r); 

− Re-nominalization of the variables to represent both the 
formulas in the Cartesian plane (x,y); 



  

− Interpretation of the graphs in relation to the problem and 
discovery of their predicting power. 

Phase 4:  
Control of the 

adherence of the 
mathematical model 

to the specific 
problem-situation. 

− Comparison between the domain and codomain of each 
relation and the domain and codomain of the corresponding 
restrictions that model the problem-situation; 

− Reflection on the acceptability of certain couples of values 
(e.g. s=66 and r=99) as solutions of the problem. 

Table 1: Indicators for the analysis of the transcripts of the discussions conducted 
by TT in their classes 

As we stated above, this a-priori analysis was shared with TT before they proposed 
the problem to their classes. TT were asked to audio-record the discussions they 
conducted with their students and to reflect on these discussions referring to three 
different perspectives: the mathematical content at play, the role played by the 
teacher, the students’ approaches to the problem and reactions to the teacher’s 
interventions. After they performed this task, they sent us both the transcripts of their 
class discussions and the corresponding reflections.  
We therefore analysed both the transcripts themselves and the TT’ reflections and the 
results of our analysis were discussed with them during a further lesson. In this paper, 
because of space limitations, we are focusing only on our analysis of the transcripts 
of TT’ discussions, aimed at highlighting the difficulties they faced when they 
implemented the problem in their classes trying to follow our suggestions. The 
transcripts’ analysis, whose main results will be presented in the next section, was 
performed referring to the four key-phases and the corresponding indicators that we 
have identified thanks to the a-priori analysis of the problem.  

DATA ANALYSIS: IDENTIFICATION OF SOME PROBLEMATICAL 
ASPECTS IN THE DISCUSSIONS CONDUCTED BY TT 
Through our analysis of TT’ discussions we have identified specific problematic 
aspects, connected to their incapability of guiding students within the games of 
interpretation and reflection necessary to make them develop those competencies and 
awareness that are objectives of an “algebraic approach” to this kind of activities. 
As regards the first phase in the resolution of the problem (the transition from 
proportions to the formalization of the proportionality law), some TT were not able 
to support students in abandoning the quantitative/numerical level. They adopted a 
procedural approach, making students only formulate the numerical proportions 
necessary to determine the couples of values that satisfy the relation and directly 
construct the graphs from the table of values. The modeling process was therefore 
inhibited.  
In some classes students were able to formulate different proportional laws starting 
from the numerical examples they constructed, but the TT accepted all these laws 



  
without asking students to interpret them through their verbalization. Many TT 
declared, during the class discussions, that “all the constructed proportions are the 
same proportion”, instead of highlighting that, although their equivalence, the 
relations expressed by these proportions are different. This erroneous conception, 
probably induced by some textbooks, could be overcome only through the activation 
of interpretative processes. 
As regards the second phase in the resolution of the problem (the twine between 
syntactical and semantic aspects in the transition from the implicit forms of the 
relation to its two explicit forms), we have highlighted a really alarming 
phenomenon. Most of the TT did not support students in controlling and discussing 
the meaning of the two formulas derived from the proportional laws. In fact, very few 
of them made students analyse the formulas through their particularization to 
introduce the role played by the letters as variables; almost none of them made 
students verbalize the formulas they had determined. 
Another problematical aspect connected to this phase is that different TT often used 
terms such as “find s/r; search for s/r; calculate s/r” - instead of “make s/r explicit” or 
“express s/r through r/s” - to invite students to construct the two explicit formulas. 
Also the use of this procedural language inhibits the conceptualization of variable. 
Finally, most of the TT guided students in the determination of the two explicit 
formulas starting from the constructed proportions, but they did not highlight how 
they could be obtained from each other, nor foster a reflection on their relationships. 
As regards the third phase in the resolution process (the representation of the two 
relations on the Cartesian plane), an aspect that we have highlighted is that some TT 
let that students construct the graphs determining the couples of values that are 
solutions of the two explicit equations through proportions, without stressing on the 
predicting power of the two formulas. In our view, this behaviour testifies that they 
conceive the modeling phase as something unnecessary and that they do not interpret 
the two formulas as the representation of all the possible pairs of numbers having the 
same ratio. Moreover, the fact that students do not refer to the formulas in 
constructing the graph is an evidence of a lack in their control of the meaning that the 
formulas convey. 
Another widespread problem related to the TT’ capability of coordinating the verbal, 
the algebraic and the graphic registers is that, although many TT examined with 
students the geometrical properties of the graphs, almost none of them made students 
interpret the graphs, highlighting their predicting power. Moreover they accepted 
continuous lines or semi-lines as graphs of the relations, without developing a 
reflection on the fact that only some points of these lines are representatives of the 
phenomenon that has been modelled. 
This last aspect is also connected to the problematic ones that we have noticed in 
analysing the TT’ discussions according to the indicators concerning the fourth phase 
of the resolution process (control of the adherence of the mathematical model to the 



  
specific problem-situation). Few TT, in fact, made students reflect on the domain and 
codomain of the relations that model the problem-situation and on the acceptability of 
certain couples of values as solutions of the problem (during most of the discussions 
the value 66 as a possible number of plants of sage was uncritically accepted). 
CONCLUSIONS 
Through the analysis of the transcripts of TT’ discussions, we highlighted that, 
although they had shared with us the aims of the activity and the a-priori analysis of 
the problem, many of them were unable to activate the necessary interpretative 
processes and meta-level reflections and therefore to exploit the potential of this task 
to elicit algebraic reasoning in students. 
The evident blocks in the games of interpretation that should have been activated 
during the class discussions testify corresponding profound gaps in the TT’ 
knowledge. These gaps, in fact, prevent them from becoming aware of what it is 
important to stress when facing this kind of activities with students. If teachers do not 
overcome these difficulties, they will not be effective models for their students, 
making them develop erroneous attitudes. This is a crucial problem in the didactic of 
algebra, because of the plurality of levels of interpretation that a teacher is required to 
effectively control.  
These results suggest that research should better scrutinize teachers and students’ 
difficulties in coordinating the different levels of interpretation often involved in the 
algebraic activity, in order to identify possible strategies to overcome them. At the 
same time, as it was also stressed in the discussion within the TWG3, a reflection 
should be developed on how teacher education programs must be engineered 
according to these results with the aim of enabling teachers to become effective 
activators of interpretative processes.  
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