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This work is based on our conviction that it is possible to 
minimize difficulties students face in learning the Principle of 
Mathematical Induction by means of clarifying its logical 
aspects. Based on previous research and theory, we designed a 
method of fostering students’ understanding of the principle. We 
present results that support the effectiveness of our method with 
teachers in training who are not specializing in Mathematics. 
1. Introduction 
The Principle of Mathematical Induction (PMI) represents a key 
topic in the education of teachers in Italy. The approach 
traditionally used in Italian schools devotes little time to the 
teaching of a solid understanding of the principle. Most text 
books do not cover the PMI in depth and only require students to 
‘blindly’ apply it in proving equalities. Students learn to 
mechanically reproduce the exercises but do not develop a true 
understanding of the PMI. We propose that it is important and 
also possible to promote understanding of the PMI, rather than 
just its application, using non traditional methods. In this paper 
we present some findings from a study that used a non-traditional 
approach to teaching the PMI with 44 pre- and in-service middle 
school (grades 6-8) teachers who were completing a teacher 
training course. Most of these trainees were not mathematics 
graduates, but had had some exposure to the PMI during their 
studies and therefore are a good sample for both examining the 
‘traces’ of their education history and assessing the usefulness of 
a non-traditional approach to teaching the PMI. In particular, we 
were interested in promoting comprehension and correcting 
previously learned misconceptions. 
2. Theoretical framework 



Previous research has highlighted difficulties that students 
encounter learning the PMI due to certain misconceptions about 
it. For example, Ron and Dreyfus (2004) argue that three aspects 
of knowledge are required to foster a meaningful understanding 
of a proof by mathematical induction (MI) are essentially three: 
(1) understanding the structure of proofs by MI; (2) 
understanding the induction basis; and (3) understanding the 
induction step. Based on our experience teaching the PMI, we 
believe that the third aspect, the induction step, is the most 
important in fostering an understanding of it. Ernest (1984) 
observes that a typical misconception among students is the idea 
that in MI “you assume what you have to prove and then prove 
it” (p.181). Fishbein and Engel (1989) also stress that many 
students are “inclined to consider the absolute truth value of the 
inductive hypothesis in the realm of the induction step” (p.276). 
Both Ernest (2004) and Fishbein and Engel (1989) argue that the 
source of this misconception is in students’ lack of understanding 
of the meaning of proofs of implication statements. They suggest 
that a proper approach to teaching the PMI must include logical 
implication and its methods of proofs. We (Malara, 2002) agree 
with Avital and Libeskind (1978) who suggest that a way to 
overcome students’ bewilderment in front of the ‘jump’ from 
induction basis to induction step is to approach MI by means of 
‘naïve induction’, which consists of showing the passage from k 
to k+1 for particular values of k “not by simple computation but 
by finding a structure of transition which is the same for the 
passage from each value of k to the next” (p.431). 
Another conceptual difficulty experienced by students that is 
highlighted by research is that many students look at the PMI as 
something which is neither self evident nor a generalization of 
previous experience. Ernest (1984) suggests that a way to 
overcome this problem is to refer to the well ordering of natural 
numbers, that is: if a number has a property and “if it is passed 
along the ordered sequence from any natural number to its 
successors, then the property will hold for all numbers, since they 



all occur in the sequence” (p.183). Harel (2001) also refers to this 
way of introducing the PMI, calling it quasi-induction, but he 
observes that there is a conceptual gap between the PMI and 
quasi-induction (namely quasi-induction has to do with steps of 
local inference, while PMI has to do with steps of global 
inference) which students are not always able to grasp. 
In addition, Ron and Dreyfus (2004) highlight the usefulness of 
using analogies with students when teaching the PMI for two 
reasons: (1) analogies illustrate the relationship between the 
method of induction and the ordering of natural numbers and (2) 
they are tools for fostering understanding of the use of MI in 
proofs. 
3. Research hypothesis and purposes  
We propose that an effective approach to teaching the PMI 
requires a combination of different points described above. In 
particular, we propose that the essential steps in a constructive 
path toward PMI should include: (1) a thorough analysis of the 
concept of logical implication; (2) an introduction of PMI 
through the naïve approach, drawing parallels between PMI and 
the ordering of natural numbers, and the use of reference 
metaphors; and (3) a presentation of examples of fallacious 
induction to stress the importance of the inductive basis. Our 
hypothesis is that a path in which all of these aspects are 
considered leads to real understanding of the meaning of the 
principle and therefore its more conscientious use in proofs. 
Furthermore, a real understanding of the principle does not 
necessary mean being able to apply it, since many proofs through 
MI require being able to use and interpret algebraic language.  
The purpose of our research is to test the usefulness of this 
proposed path in instilling a deeper understanding of the PMI. 
We do this by monitoring trainees during a range of activities and 
ending with a final exam designed to assess students’ true 
understanding of the PMI. In this paper we present the 
experience of one trainee, which supports the effectiveness of 
this approach. 



4. Method 
The path we propose can be divided into six main phases: (1) An 
initial diagnostic test; (2) Activities which lead students from 
conditional propositions in ordinary language to logical 
implications; (3) Numerical explorations of situations aimed at 
producing conjectures to be proved in a subsequent phase; (4) An 
introduction to the method of proofs by MI and to the statement 
of the principle; (5) Analysis of the statement of PMI and 
production of proofs; (6) A final test (given 3 weeks after the last 
lesson). Because of space limitations, we focus on one central 
phase in the path, because it contains the aspects we propose are 
essential to a meaningful approach to teaching PMI. The 
following proof (table 1), which was a starting point in the 
construction of a lesson, was proposed by a trainee, R., during 
the numerical exploration phase.  
R. intended to prove the conjecture she produced on the sum of the 
powers of 2: 20+21+22+23+…+2n=2n+1-1.  
After having observed that proving this equality is the same as 
proving 20+20+21+22+23+…+2n=2n+1, R. proceeded in this way: 
20+20+21+22+23+…+2n= 2⋅20+21+22+23+…+2n= 
=21+21+22+23+…+2n= 2⋅21+22+23+…+2n= 
=22+22+23+…+2n=2⋅22+23+…+2n=…=2n+2n=2⋅2n=2n+1.1    Table 1 
We showed to trainees R.’s proof and we observed with them 
that: the individual steps of her proof constitute ‘micro-proofs’ of 
the individual implications P(0)→P(1), P(1)→P(2)…;  the dots 
testify that she made a generalization. Table 2 illustrates the 
formal aspects we used in this discussion. We discussed the 
following points with the trainees: (1) the structure of natural 
numbers is such that every number n could be obtained from the 
previous (n-1) adding 1; (2) Every sum Sn is obtained by the 
previous sum adding the nth power of 2, 2n; (3) The terms of the 
successions have in common the property of strictly depending 
on the terms which precede them. 

P(n): 20+20+21+22+23+…+2n=2n+1  (n≥0) 
                                                
1 R.’s proof represents what Harel (2001) defines as quasi-induction. 



20+20+21+22+23+24+…+2n= 
=2⋅20+21+22+23+24+…+2n= 
=21+21+22+23+24+…+2n= 
= 2⋅21+22+23+24+…+2n=  
=22+22+23+24+…+2n= 
=2⋅22+23+24+…+2n= 
 
… 
 
 
=2n+2n= 
=2⋅2n= 
=2n+1 

P(0): 20+20=2⋅20=20+1 
P(0)→P(1) 
(20+20)+21=21+21=2⋅21=21+1 
P(1)→P(2) 
(20+20+21)+22=22+22=2⋅22=22+1 
… 
P(k): 20+20+21+22+…+2k=2k+1 
P(k)→P(k+1) 
(20+20+21+…+2k)+2k+1=2k+1+2k+1 
= 2⋅2k+1=2k+2 
… 
                                         Table 2 

These observations allowed the trainees to agree on the fact that 
every proposition could be derived recursively from its prior. 
Starting with this intuition, we highlighted the common structure 
of R.’s proofs of the ‘particular implications’ and guided trainees 
to observe that this structure can be followed every time it is 
necessary to prove a proposition P(k+1) starting from the 
previous proposition P(k). Trainees became aware that the 
complete proof of the statement is based on a chain of 
implications, such as the ones highlighted in R.’s proof, that can 
be ‘summarized’ as “P(k)→P(k+1) ∀k∈N”.  Together we 
constructed the proof of this general implication, as a 
generalization of the step-by-step micro-proofs. Because of the 
previous activities on logical implication, trainees were aware 
that an implication could also be valid when the two components 
are not valid. It was easy for them therefore gradually to become 
aware that proving “P(k)→P(k+1) ∀k∈N” means proving that 
“P(n) is valid ∀n∈N”, only if the first proposition of the chain, 
P(0), is valid.  
5. Analysis of trainees’ work during the path: the case of L. 
During the activities we proposed them, trainees also worked 
individually. We collected their protocols in order to analyze the 
evolution of their acquisition of meaning of the PMI. In 



particular, we compared the answers they gave in the initial and 
final tests in order to highlight their effective acquisition of 
awareness of the meaning and use of PMI. The final test 
consisted in four questions, two following Fishbein and Engel’s 
questionnaire (1989), the other two concerning the proof of two 
statements. The purpose was to verify: (1) whether trainees really 
understood the meaning of the inductive step and the importance 
of the inductive basis as an integral part of the proofs by MI; (2) 
whether trainees were able to single out what the key-passages to 
perform proofs by MI concerning new conjectures are. The 
results of the questionnaires were really satisfactory because 
almost all trainees produced correct proofs and, more 
importantly, many of them demonstrated having acquired an 
effective comprehension of the sense of the principle. In this 
paragraph we focus on the analysis of the evolution of another 
trainee, L., because we observed a remarkable difference 
between the problematical nature of her initial situation and the 
level of awareness and the abilities she displays in her answers 
on the final test. We present two excerpts from her protocols: the 
first one is taken from the initial test and the second concerns an 
answer she gave in the final test. 

Initial test: The excerpt refers to the proof of the inequality 
2n>3n+1 (where n≥4). L. writes: 
1)  24>3⋅4+1 16>13  ok 
2) 2k>3k+1 k>4 It is true. 
Proof:   2k+1>3(k+1)+1 2⋅2k>3k+3+1 
 2⋅2k>3k+1+3 
→ 2P(k)>P(k)+3, which is always true because the hypothesis is 
true (∀k≥4)… but it something I can see at a glance! 

First of all see L.’s erroneous use of the specific symbology; 
instead of referring to P(k) as to the proposition which represents 
the statement to be proved, she deals with it as representing each 
of the expressions at the two sides of the inequality. Also to be 
considered are the logical aspects involved in the use of the 
principle; i.e., L. directly considers the inequality to be proved, 
trying to justify it on the basis of the hypothesis, but her 



arguments rely only on ‘evidence’. L.’s difficulties have to be 
ascribed to a lack of knowledge about logical implication, which 
is also documented in other answers.  
The second excerpt we present refers to a part of the answer L. 
gave to the following question (final test): 

“During a class activity on PMI, Luigi speaks to his mathematics 
teacher in order to remove a doubt: We have just proved a theorem, 
represented by the proposition P(n), by MI, but this method is not 
clear…I am not sure that the theorem is really true because, in 
order to prove P(n+1), we had to hypothesise that P(n) is true, but 
we do not know if P(n) is really true until we prove it! If you were 
his teacher, how would you answer to Luigi?”. 

After correctly enunciating the principle, L. commented:  
“It is necessary for Luigi to understand that in the inductive step 
we do not prove either P(n) or P(n+1), we only prove that the 
validity of P(n) implies the validity of P(n+1), that is, we prove the 
implication  P(n)→P(n+1) ”.  

Because of space limitations, we do not report the correct proofs 
L. produced. This excerpt, however, demonstrates the level of 
comprehension she attained during the laboratory activities. 
5. Conclusions 
Our observations of the laboratory activities and analysis of 
trainees’ protocols allow us to take some conclusions on the 
validity of our research hypothesis. L. represents a prototype of 
an individual for whom a traditional way of teaching left only 
few confused ideas on the proving method by MI. The different 
approach L. adopted and her ability both to understand the 
problem pointed out by Luigi and to respond in a synthetic and 
precise way to his doubts, represents evidence of the 
effectiveness of the choices we made in our approach to teaching 
the PMI. L. is just one example from a large group of trainees 
who developed a deeper understanding of the PMI in a similar 
way. The positive outcomes on the final tests testify to the 
validity of our research hypothesis regarding the aspects 
fundamental to a productive introduction to the use of PMI as a 



‘proving tool’. As a future development of our research, in order 
to test further the effects of this approach, we plan to test the 
same method in secondary school, with students learning the 
PMI for the first time. In particular, our aim is to highlight the 
role played by the teacher in the management of the lessons. 
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